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Abstract. We present a semi-supervised online method for novelty detection and evaluate its
performance for radio astronomy time series data. Our approach uses sparse, adaptive eigenbases
to combine 1) prior knowledge about uninteresting signals with 2) online estimation of the current
data properties to enable highly sensitive and precise detection of novel signals. We apply Semi-
Supervised Eigenbasis Novelty Detection (SSEND) to the problem of detecting fast transient radio
anomalies and compare it to current alternative algorithms. Tests based on observations from the
Parkes Multibeam Survey show both effective detection of interesting rare events and robustness
to known false alarm anomalies.

1. Introduction

Recent discoveries in high time resolution radio astronomy data have drawn attention to a new
class of sources. Fast transients are rare pulses of radio-frequency energy lasting from microseconds
to seconds that might be produced by a variety of exotic astrophysical phenomena [6, 5, 12, 13]. For
example, X-ray bursts, neutron stars, active galactic nuclei, and extraterrestrial intelligence (ETI)
are all potential sources of short-duration transient radio signals. Such events are often discovered
serendipitously in data collected for other purposes. These transients are generally faint and subtle,
so improved detection algorithms can directly benefit all such commensal monitoring. Existing
detection approaches rely on a dispersed pulse model of the signal shape. This paper presents a
new method for analyzing real-time high-resolution radio astronomy data that operates without this
model assumption. Therefore, it can potentially detect a far broader class of anomalous events in
real time, as well as unexpected events that do not match a known profile.

We have formulated fast transient monitoring as a time series statistical anomaly detection prob-
lem [17, 18]. The main challenges of our domain are:

• High dimensionality: Signals of interest span multiple antenna power measurements that
could include hundreds of time steps and frequency channels.

• Real time processing: With the exception of a few dedicated surveys, most high time
resolution data is too voluminous to archive. Therefore, events must be detected in real time
to select only the most interesting candidates for storage and later exhaustive analysis.

• Nonstationarity: Background noise characteristics change over time on medium to long
scales, manifesting as narrow-band noise or large-scale gain fluctuations that change with
hardware and observing conditions. Detection of anomalous “fast” signals should be robust
to these effects.

• False alarms: Certain known classes of events, such as momentary Radio Frequency Inter-
ference (RFI), are not astronomically interesting but are easily mistaken for fast transients.
It is important to avoid flagging these events as novel to avoid filling the detection buffer with
these false alarm events. Further, false alarms waste valuable astronomer time in reviewing
the results.

This work proposes a new solution that learns a low-dimensional linear manifold for describing
the “normal” data. The novelty of our approach lies in combining basis vectors learned in an
unsupervised, online fashion from the data stream with supervised basis vectors learned in advance
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from known false alarms. We thereby achieve adaptive, data-driven anomaly detection that also
exploits prior domain knowledge about signals that may be statistically anomalous but are not
scientifically interesting (and should therefore be ignored). We identify truly interesting anomalies
by compressing and reconstructing the data [9] using the combined basis. High reconstruction error
indicates a signal that does not match the learned profile of the normal data. The unsupervised
component uses the incremental method of Ross et al. [14, 19], an efficient online algorithm that can
run in real time.

We evaluated semi-supervised novelty detection using data from the Parkes Multibeam Survey.
This data set was originally collected to search for pulsars, which are astronomical sources that
emit radio pulses at regular periods. However, several non-pulsar anomalies have recently been dis-
covered in this dataset [3], making it a compelling test case. We found that by explicitly filtering
known false alarm patterns, semi-supervised anomaly detection yields significantly better perfor-
mance than state-of-the-art transient detection methods. This method shows promise for use in
current and future astronomical surveys, including data to be collected by the Square Kilometre
Array, a radio telescope currently under development that will be 50 times more sensitive than any
existing instrument.

We presented the core idea of Semi-Supervised Eigenbasis Novelty Detection (SSEND) at the Oc-
tober 2011 NASA Conference on Intelligent Data Understanding [22]. This paper enhances SSEND
by using local context to isolate false alarm signals from their incidental background. This mi-
nor change significantly improves precision (see Section 3.2 and Figure 7). We also show a sparse
PCA formulation which offers better interpretability for known uninteresting signals (Section 3.2).
More generally, this sparse version demonstrates how the basic SSEND approach can incorporate
alternative basis learning techniques.

2. Related Work

Generic approaches to anomaly detection are data-driven: they typically learn a representation
of the “normal” or uninteresting data, then identify any observations that do not match this model.
One such method is one-class support vector machine (SVM) classification [20], in which an SVM
is trained only on examples from the normal class and then detects any new data belonging to a
different, previously unobserved class. More recent efforts seek to include user-labeled examples.
Blanchard et al. [2] propose a semi-supervised technique that trains a classifier using two kinds
of data: labeled data known to be normal and an additional unlabeled sample that may contain
anomalous data. Both approaches aim to train a binary classifier that labels new items as either
“normal” or “anomalous.” The Blanchard technique further accommodates an upper limit on the
false anomaly detection rate. Our approach differs from these methods in that it specifically incor-
porates known examples of false alarms to further improve the system’s precision. In addition, our
system is designed for online operation rather than batch processing of previously collected data.

In contrast with statistical novelty detection, radio astronomers generally use physical models
of the anticipated events. If the precise shape of the event is known in advance, matched filtering
provides maximum sensitivity to detect faint transient pulses. These models reflect the fact that
signals from remote astronomical sources are dispersed. As the signal travels through the interstellar
medium that lies between the source and the observer, it encounters free electrons that absorb some
of the signal’s energy and delay its propagation. This affects lower frequency components more than
higher frequency components. The slight difference accumulates over long distances and ultimately
causes a broadband signal to appear dispersed in time, so that the lower frequency components
arrive later.

Real-time transient detection typically uses incoherent analysis which represents the data as a
matrix of signal powers channelized into discrete time and frequnecy bins. The data is typically
portrayed as a two-dimensional image in which the axes correspond to time and frequency. The
pixel intensity shows observed power, the accumulated squared voltage received by the antenna.
Figure 1 (left) shows a pulse from pulsar J0742-2822 that displays a typical dispersed “sweep.”
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Dispersion manifests as a time delay ∆tdelay that is inversely proportional to the signal’s frequency.
Following [15]:

(1) ∆tdelay = 4.1ms
DM k

∆ν2
GHz

Here ∆ν is the difference between the frequency of the reference channel and the delayed channel.
The amount of dispersion, or the Dispersion Measure (DM), correlates with the number of interfering
electrons present between the source and the observer [1]. It is commonly reported in parsecs per
cm3. For regions of constant electron density, the amount of dispersion suggests the physical distance
to the source.
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Figure 1. Examples of typical and atypical transient signals. The image at left
shows a single pulse from pulsar J0742-2822, with a classic dispersed pulse pro-
file. Such signals can be found by inverting the dispersion effect prior to matched
filtering. More exotic and poorly understood phenomena, like the peryton signal
pictured at right, do not match typical dispersion and could benefit from model-
free detection strategies with fewer assumptions. This example shows a distinctive
“kink” in the curved signal. The narrow horizontal lines are narrow-band inter-
ference; such behavior is time-variable but not astronomically relevant and would
ideally not affect the detection decision.

Current detectors for remote transient signals are typically tailored to the known properties
of dispersion. Data is exhaustively dedispersed using a variety of different candidate DMs [1, 4].
Dedispersion provides a detection statistic by summing across all frequency channels, applying an
appropriate temporal shift at each frequency to undo the time delay of a given assumed DM. This
tailored summation is equivalent to a matched filter, and increases detection sensitivity over a naive
sliding window detection using all frequency channels. By seeking the maximum dedispersed sum
across many potential DMs, one can characterize the signal (and roughly the distance to the source).
A dedispersion search can also help separate genuine astronomical signals from Radio Frequency
Interference (RFI). Broadband RFI manifests as a vertical signal with no dedispersion (DM = 0);
the pulse originates locally and all frequencies arrive simultaneously.

This approach has proven effective for the detection of pulsars and other astronomical phenomena
[7, 12, 6, 13]. It can be implemented efficiently to keep up with streaming data using FPGAs, GPUs,
or other parallel architectures; dedispersion over multiple DMs is inherently highly parallelizable.
The weakness of this approach, however, is that it is sensitive to only one kind of signal. While
dispersion is a known phenomenon of all remote signals, some recently-discovered sources (Figure 1,
right) exhibit deviations from the expected shape which renders them difficult to detect. Further, it
is not known how many other exotic source types may currently be overlooked due to the detection
method’s dependence on one kind of signal model. The next section presents a more flexible strategy
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that could operate in parallel with dedispersion searches, providing the capability to detect both
dispersed pulses and unanticipated novel events.

3. Approach

We describe a new approach that combines 1) prior knowledge about uninteresting signals with
2) online estimation of the current data properties to enable flexible detection of novel signals. We
treat the data as a sequence of observations that arrive sequentially from the antenna. We combine
n such observed data points xi ∈ Rd as columns of a d×n data matrix X = [x1,x2, . . .xn]. Here, d is
the number of frequency channels observed at each time step. The goal is to compute a discriminant
function that maps each observation to a novelty score, f(xi) : Rd �→ R. The discriminant value
should be small for typical data but large for interesting or novel data.

3.1. Constructing an eigenbasis. We use the popular strategy of measuring the distance from
the signal to a low-dimensional manifold learned from the data stream [21, 9]. We will start by
describing the simpler case of novelty detection in a static (non-adaptive) subspace. We hypothesize
that the “regular” data lies on a linear subspace in Rd�

with d� � d. Subtracting the data mean
x̄ yields a translated matrix X̃ = [(x1 − x̄), (x2 − x̄), . . . , (xn − x̄)]. Singular Value Decomposition
(SVD) provides X̃ = UΣVT . The columns of U are the principal components: an orthonormal basis
with axes in the order of decreasing data variance. We form a low-dimensional basis A using the first
d� columns of U. One can also compute the matrix A via classical Principal Component Analysis
(PCA), e.g., using the eigenvectors corresponding to the largest eigenvalues of the covariance matrix
X̃X̃T .

We quantify the novelty of observation xi using the Euclidean distance to the subspace, equivalent
to the L2-norm reconstruction error after first transforming xi into the low-dimensional basis and
then reconstructing an approximation x̂i. This leads to the following discriminant function which is
large for novel data and zero for points on the linear manifold.

(2) f(xi) = �xi − x̂i� = �(xi − x̄)−AAT (xi − x̄))�2
The eigenvalue decomposition makes computing A difficult for large n. However, it is important

that our basis accommodate large data sets and long-timescale changes in the background. One
solution is to periodically recompute the entire matrix A in batch mode using a recent subset of
the data. In this work we employ the online approach of Ross et al. [14, 19] for efficient online
updates to the mean x̄ and eigenbasis A. This approach updates an SVD decomposition defined by
some previous data X̃p = UpΣpVT

p . Each block update has a data matrix Xq with mean x̄q and

decomposition X̃q = UqΣqVT
q . This gives a combined dataset Xr = [Xp|Xq]. Fortunately one can

compute an updated mean x̄r and eigenbasis X̃r = UrΣrVT
r without having to store the old data

explicitly. We refer the reader to the original work [14] for details, but summarize their approach
in Algorithm 1. It relies on the widely-studied R-SVD procedure [8] which exploits the fact that
a low-rank update to the eigenbasis is decomposable into efficient block operations. The method
extends R-SVD to the case where the data are not assumed to have zero mean.

Algorithm 1: Ross et al. Algorithm for Sequential Eigenbasis Updates.
Input: Previous mean x̄p

Previous decomposition UpΣpV
T
p

Additional data Xq

Output: Revised mean x̄r

Revised decomposition UrΣrV
T
r

Compute x̄r = n
n+m x̄p + m

n+m x̄q, where n = |Xp| and m = |Xq|
Compute E =

�
Xq − x̄r1(1×m)|

�
nm
n+m (x̄p − x̄q)

�

Use UpΣpV
T
p with E as input to R-SVD to compute UrΣrV

T
r
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An advantage of the Ross et al. method is that one can downweight the old basis to introduce a
forgetting factor that allows the influence of old data to decay gradually as new points are added.
This lets the basis shift to track a nonstationary distribution, and it accommodates observations of
arbitrary length.

3.2. Semi-supervised eigenbases. Automated novelty detection should exclude rare events that
are known to be uninteresting. In particular, one might anticipate specific false alarms due to
instrument noise, interference, or other mundane but intermittent phenomena. Alternatively, a
human user could provide feedback on previous detections that turned out to be uninteresting.
We incorporate information about these known false alarms with a second basis trained to model
rare or anomalous, but uninteresting, patterns. Our semi-supervised novelty detection method uses
a combined subspace with both supervised and unsupervised components. It therefore adapts to
long-term background trends while still excluding known false alarms. Algorithm 2 summarizes
Semi-Supervised Eigenbasis Novelty Detection (SSEND).

Algorithm 2: Semi-Supervised Eigenbasis Novelty Detection (SSEND)

Input: False alarm data Xf of size l datapoints,
Context timesteps Xc of size m datapoints f or each false alarm
Size m block updates of streaming, unsupervised data Xu

Output: Novelty scores f(x1), f(x2), . . . for Xu

Offline

For each false alarm timestep xf :
Concatenate m zero-meaned context timesteps to yield X̃c = [xc1 − x̄c, . . . ,xcm − x̄c]
Use PCA with X̃cX̃

T
c or SVD with X̃c = UcΣcV

T
c to compute an orthonormal basis Uc

Compute the residual xs = xf − x̄c +UcU
T
c (xf − x̄c)

Append the residual xs to the supervised training data set Xs

Compute X̃s = [xs1 − x̄s, . . . ,xsl − x̄s]
Use PCA or SVD with X̃s to compute the supervised, orthonormal basis Us

Online

Using the first block Xu1, compute an initial mean x̄p and eigenbasis UpΣpV
T
p

For each subsequent Xuj :
Compute a revised mean x̄r and a revised decomposition UrΣrV

T
r using the Ross et al. method

Define a combined basis Uc = [Ur|Us]
Use QR decomposition to find a semi-supervised basis Uss that makes Uc orthonormal
For each xi ∈ Xuj :

Compute f(xi) = �(xi − x̄r)−UssU
T
ss(xi − x̄r)�2

SSEND has both offline and real time elements (shown visually in Figure 2). Offline, we accumu-
late the false alarm set of momentary events known to be uninteresting. These timesteps will also
contain incidental background noise that is unrelated to the event itself, so we must take additional
steps to isolate the false alarm pattern from its local context. We construct a data matrix Xc using
the timesteps directly prior to each event, and model them with a context basis Uc using a procedure
like PCA. We then project each false alarm onto its context basis, leaving a residual value that is
the unique signal of that event (the part which is distinct from its local background).

(3) xs = xf − x̄c +UcU
T
c (xf − x̄c)

We concatenate the residuals into a dataset and train a supervised basis Us. This is our false alarm
model. At runtime, we compute an adaptive mean x̄r and basis Ur using the Ross et al. method as
before, and define a combined semi-supervised Uss = [Ur|Us] to span both the supervised and the
unsupervised data. We orthogonalize the new basis using QR decomposition with the Gram-Schmidt
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Compute residuals!

Novelty score!

Figure 2. Semi-Supervised Adaptive Novelty Detection concept

method. The reconstruction error with respect to the combined model yields a more reliable novelty
score.

Note that the proposed approach does not preserve the mean of the initial false alarm distribution,
which is assumed to drift in a similar fashion as the mean of the online distribution. User feedback
would permit a more sophisticated system that also updates the false alarm mean and basis online,
but we focus here on the simpler case where all training occurs in advance.

The specific semi-supervised approach here is one of a broader family of methods, where the bases
to be combined might be learned through many alternative techniques. In particular, there are many
options for the supervised portion which occurs offline and does not have a real-time computational
constraint. For centered data X̃s, classical PCA is tantamount to identifying components z� which
maximize the magnitude of the projection onto the data covariance matrix:

(4) z� = argmax
z

zT (X̃T
s X̃s)z s.t. zT z ≤ 1

In this paper, we introduce a further innovation designed to improve the interpretability of the
learned model. We replace the PCA step with a sparse PCA formulation [11]. Specifically, we
incorporate an L1 norm penalty on the components.

(5) z� = argmax
z

zT (X̃T
s X̃s)z− λ�z�1 s.t. zT z ≤ 1
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This has the effect of driving basis components to zero, with the λ parameter balancing variance
maximization and sparsity objectives. These sparse codebooks may benefit interpretability, and can
improve generalization performance where the physical processes are themselves known to be sparse.

4. Evaluation

SSEND was motivated by applications in radio astronomy. We compared performance on a test
set of radio array data using five linear and nonlinear novelty detection algorithms: the traditional
dedispersion approach, kernel PCA novelty detection [9], one-class SVM novelty detection [20],
unsupervised adaptive novelty detection using PCA, and the proposed semi-supervised approach.

4.1. Data set. We use a selected portion of data from the Parkes Multibeam Survey, an extensive
search for Pulsars using the Parkes radio telescope of CSIRO [7, 16, 10]. This instrument views
the sky simultaneously through 13 receivers, effectively providing 13 independent antennas covering
adjacent, and slightly overlapping, areas in the sky. Receiver measurements are recorded at high
time resolution and transformed into channelized power measurements corresponding to the squared
voltage response at various discrete frequency channels. This specific data sequence contains ex-
amples of events known as perytons, first discovered by Burke-Spoloar and Bailes in their analysis
of Parkes pulsar surveys [3]. Perytons are still poorly understood, and they are scientifically inter-
esting because they vary in frequency and approximate a dispersion curve. However, they do not
exactly match a dispersion profile, and their spatial distribution in the sky suggests that they are of
terrestrial (possibly atmospheric) origin.

In addition to these features, structured interference is often visible in the form of channel-specific
noise and gain fluctuations appearing as horizontal stripes. Such noise is pervasive and typical for
highly sensitive, cryogenically cooled receiver feeds. Our tests focus on approximately five minutes
of observation time in each of the 13 receivers. This span includes several tens of thousands of
timesteps recorded at a cadence of 0.125 milliseconds in each of 96 frequency channels near 1450
MHz. Figure 3 shows three examples of perytons. The red rectangle shows the size of an example
data window used to construct xi.

Segment!

Figure 3. True anomalies: Peryton events from the Parkes Multibeam Survey.

Figure 4 shows some examples of false alarms that are statistically uncommon but not scientifically
interesting. These specific examples are broadband pulses of Radio Frequency Interference (RFI),
probably emitted by some local artificial source. Such features are rare enough that they are not
well-represented in an unsupervised eigenbasis, but typical enough that they would dominate novelty
detection results if not handled explicitly.

4.2. Methodology. We average the data by a factor of 20 down to a temporal resolution of 2.5
ms, and then create a data set from a sequence of short non-overlapping segments that cross all
96 vertical frequency channels and 6 horizontal timesteps. This segment width corresponds to a
15ms time interval, found to maximize performance across all methods. We reorder each segment
into a single column vector x ∈ R384. Finally, we unify data from all beams into one large dataset,
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Figure 4. False anomalies: Vertical stripes due to broadband RFI that are statis-
tically anomalous but uninteresting.

witholding five beams (38%) for training purposes. These tests consider the proposed SSEND
method which combines supervised and unsupervised components and reports reconstruction error
fss(xi). Here we trained the subspace Us using 30 overlapping segments (Xs) drawn from three
manually-selected broadband RFI pulses. We show results using both the original (dense) solutions
and the sparse PCA variation. For comparison, we also report results from the original SSEND
version published in earlier work that does subtract the local context of false alarm training events
[22].

For comparison, we also consider some alternatives that are broadly representative of popular
linear and nonlinear anomaly detectors. First is a purely unsupervised eigenbasis approach based
on reconstruction error from a low-dimensional basis fu(xi). It does not explicitly account for RFI.
Another popular unsupervised method is the one-class SVM novelty detection of Scholkopf et al. [20].
Here we use a radial basis kernel function selected with a grid search, and treat each test point’s
distance to the decision boundary as a real-valued novelty score. A nonlinear, unsupervised version
is kernel PCA: a non-linear extension of PCA. Kernel PCA novelty detection first maps the data to
a higher (generally infinite) dimensional features space, computes the principal components in this
space, projects the transformed data to a lower-dimension manifold, and defines a novelty measure
as the reconstruction error in the feature-space. Kernel functions allow the reconstruction error
to be calculated without explicitly mapping to the feature space [9]. However, this method never
explicitly calculates the principal components so it cannot be used as an adaptive technique in the
manner discussed in Algorithm 2. Instead we use the implementation of Hoffmann et al. [9]. We use
a radial basis kernel function with parameters selected by a grid search.

Finally, we consider a state-of-the-art radio astronomy solution that uses incoherent dedispersion
and summation to search DM values from 0 to 500. We correct each time step separately for each
DM, and use the maximum response from all DMs as the novelty score fd(xi). Time averaging
did not improve performance for the dedispersion so we report the dedispersion approaches’ single-
timestep result. We used the 15ms window for the other methods, which we found to give the best
overall performance. We used equivalent preprocessing in all trials.

We identified the precise locations of all peryton events (desired detections) noted in the study
by Burke-Spolaor et al. [3]. These appeared to some degree in all antennas, although the signal
strength and character varied somewhat even for simultaneous observations. The concatenated
dataset provided 88 real novel events for our evaluation. We assigned each peryton an enclosing time
interval; any detection in this range counted as having successfully detected the peryton. We take the
peryton to be present in all beams even though the actual signal strength varies across receivers. This
doesn’t matter for our performance comparison since weak signals penalize all detection methods
equally.

We evaluated each method by first computing novelty scores for the entire data set, sorting these
scores across all beams, and then counting the result of each trigger in order of decreasing novelty.
Each peryton can only be captured once, though multiple triggers within the same event do not
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count as false positives. However, any detection falling outside a peryton interval counts as a false
positive.

Supervised 
(PCA)

Supervised 
(Sparse PCA)

Unsupervised 
(Incremental PCA)

Figure 5. Orthonormal principal components used to construct Uss from Ur and
Us (dense or sparse). The unsupervised portion (left) models channelized interfer-
ence, while the vertical structures in the supervised portion represent momentary
broadband RFI.

4.3. Results. A visualization of the unsupervised and supervised bases learned by our method
appears in Figure 5. Here we use the top 4 principal components as an unsupervised basis with
online updates from the data stream. These eigensignals (Figure 5, left) show high magnitude in the
most variable channels; at the time this eigensignal snapshot was captured, such channels comprised
the major axis of variance for the data set. A supervised basis of 8 dimensions models the known
broadband RFI. We show the top eigensignals for both classical and sparse methods in Figure 5
center and right, respectively. Both models capture the vertical profile of momentary RFI pulses at
different locations. The sparse basis (right) is clearly interpretable as a combination of short additive
broadband components. Paired with either supervised option, the online PCA basis can accurately
reconstruct a slow shift in channelized RFI conditions along with any additive RFI pulse. Note that
this image shows the orthonormal segments after QR factorization.

Figure 6 compares novelty detection scores for the entire observation sequence of the first test
beam, computed with a purely unsupervised basis (standard PCA), fu, and the semi-supervised
approach, fss. Interesting peryton events are noted by black triangles; the other signal spikes
correspond to various kinds of RFI. Five peryton signals were barely visible in the reconstruction
error of either method, due possibly to the alignment of non-overlapping segments or the inherently
weak visibility of those events in this beam. We exclude these five from the diagram for clarity.
In general SSEND responds to the novelty of peryton events while filtering most of the RFI. In
contrast, broadband RFI contaminates the purely unsupervised approach; it accounts for the three
strongest responses by fu for this sequence.

Figure 7 shows a Receiver Operating Characteristic (ROC) curve describing the tradeoff in pre-
cision and recall rates. We report the number of perytons captured for a variety of false positive
budgets, considering the semi-supervised approach as well as the sparse semi-supervised variant
which uses sparse PCA for supervised learning stage. False positive budgets beyond 10 are excessive
since this would represent greater than one detection event for every 5 seconds of observations (an
unrealistic burden on manual post-analysis). Future commensal campaigns with constant observa-
tions and higher data volumes will demand even stricter limits. For this low error budget, SSEND
considerably outperforms the competing methods: the top 13 signals detected via fss are due to
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Figure 6. Semi-supervised learning filters out RFI events that would otherwise
dominate the detection results. This time series plot shows per-timestep novelty
evaluated for the first beam in the test set. Not all perytons are clearly distinguish-
able in this beam.
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Figure 7. ROC curves comparing eigenbasis novelty detection approaches with
the traditional dedispersion search.

perytons, while the kernel PCA technique detects ∼30 false-positives before the first peryton, and
the unsupervised method reports more than 50 false positives before finding the first real peryton.
These runner-up methods require 250 and 200 false positives respectively before they match the
error-free retrieval rate of the semi-supervised approaches.

Notably, both dense and sparse SSEND offer comparable performance. For completeness we also
report perforance of the original SSEND algorithm first reported in [22] which does not consider
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the local context around false alarms. Moving to the version reported here produces a slight, but
perceptible, improvement. Additional hand-tuned RFI excision rules, such as a ban on zero-DM
signals that are likely to be terrestrial, might improve performance further. Naturally, such rules are
less general than a purely learning-based approach and might filter other unanticipated anomalies.
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Figure 8. ROC curves to assess the sensitivity to data segment sizes.

The preceding results form xi with a data segment of 15 ms (6 time steps). We evaluated
sensitivity to segment length (see Figure 8). Segments of duration 10 − 15 ms performed best for
this data set. It is possible that smaller segments are susceptible to noise while larger sizes dilute
the perytons. It might improve performance for large segments to use a higher-dimensional basis for
the unsupervised component. Such models might do a better job of modeling temporal structure
(such as switching interference) that begins to appear at these scales.

We also assessed the runtime of each method to determine whether they could be used in a
realistic real-time setting. Using a single core of a modern desktop processor, the runtime of the
dedispersion search method averaged 0.16 seconds per DM for the entire subsampled sequence, or
≈ 80 seconds for a typical search over 500 DM values. This could be divided easily among multiple
processors to provide faster processing for multiple beams. The eigenbasis approaches’ runtimes
depend strongly on the size of the block updates to the eigenbasis. For a single desktop processor
core performing block updates of size m = 100, the entire observation from a single beam was
processed at 5× real time (≈ 10 seconds/beam for the entire dataset). The time required was
slightly larger (up to ≈ 20 seconds/beam) for smaller block updates where constant-time overhead
costs had a larger impact. The accuracy of these techniques was nearly indistinguishable for all
block update sizes we tried. Varying the segment sizes also affected run time by up to a factor
of two. Kernel PCA and one-class SVM performed considerably slower than the dedispersion and
eigenbasis approaches as all computations were performed with an RBF kernel representation of
the data: a representation of size |x|2 = 3842 for this work. In our experiments we found these
techniques required ≈ 200 − 400 seconds/beam with block updates of m = 400. Furthermore,
unlike the dedispersion and eigenbasis techniques, the Kernel PCA and one-class SVM computation
times scale quadratically with the size of m. This reduces the generality of these methods, and in
combination with their large computational run-times, makes them infeasible as real-time techniques.
On the other hand, we found the dedispersion and eigenbases approaches to be readily employable
for real-time use on general purpose computing hardware.
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5. Discussion

Semi-Supervised Eigenbasis Novelty Detection applies to anomaly detection in domains with real-
time requirements, high-dimensional input, and prior knowledge about false alarm events. Of course,
it is not necessary to incorporate false alarm information directly into the novelty detection model as
we have done here. Instead a pre-classification could filter these events prior to a purely unsupervised
novelty detection stage. Nevertheless, there may be other advantages to the combined approach of
SSEND. It is simple and easy to implement. The projection shifts to reflect any underlying drift in
the mean signal levels, so that a basis trained on previous false alarms remains relevant. Further
work will investigate ways to combine multi-scale models when the temporal extent of the interesting
events is not known in advance. Finally, application to the broader Parkes survey catalogue will
increase practical experience with the technique, and may even reveal additional classes of RFI and
astronomical transient events.
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